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Ahshac t  We present a microscopic model for the aggregales of amphiphilic molecules. based 
on a simple density functional approximalion for the free energy. The different molecular 
aggregates are described as self-structured density distributions at the relative minima of the 
grand potential energy. We search for these structwes with planar and spherical geometnes, 
and obtain the phase diagram for bilayer membranes. and the CUNaNre energies for vesicles 
and different types of micelles. The study of a global phase diagnm, to get the density of 
micelles and isolated amphiphilic molecules, at equilibrium with free membranes, q u i r e s  the 
link between two description Levels of micelles: as self-structured density distributions, or as 
molecular clusters in the solution of amphiphilic molecules in water. This is done with the help 
of a simple harmonic model which provides an appropriate choice of the configurational unit 
cell for micelles. 

1. Introduction 

Amphiphilic molecules are complex, flexible structures with a polar group in the ‘head‘ 
and one or several hydrocarbon ‘tails’. The polar head is hydrophilic-it would be easily 
dissolved in water-while the hydrocarbon tails are hydrophobic and they would segregate 
like oil in water. The presence of both trends in the same molecule implies the frustration of 
these opposite tendencies, and the result is the large variety of aggregation structures which 
are observed in these systems: micelles, membranes, bicontinuous foams, inverse micelles, 
etc; with aggregation scales going from the molecular size, to mesoscopic structures and 
up to macroscopic phases [l-31. The smallest aggregates are spherical micelles, which are 
clusters up to few hundred molecules, with the polar heads in the surface with water and 
the hydrocarbon tails in the interior. A solution of water with micelles may be regarded as 
an extreme case of non-ideal solution with strong clustering effects. Rod-like micelles and 
membranes are clusters which become mesoscopic in one or two dimensions. In particular, 
membranes are two-dimensional structures with molecular width in the other direction. 
The extensive properties in a membrane are proportional to the surface area, so we may 
describe it as a dense two-dimensional phase in thermodynamic coexistence with the dilute 
water solution. At higher concentration of amphiphilic molecules in water, the micelles or 
membranes interact with each other and produce other three-dimensional phases, like micelle 
crystals, lamellar phases and more complex structures. The most relevant characteristic of 
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these phases is that they combine different levels of organization, at very different scales 
and without a rigid hierarchy between them [1-3]. 

The theoretical understanding of these systems poses a tremendous challenge [4]. The 
complexity of the molecules and their interactions renders impossible any first-principles 
description at microscopic level. The description through effective models has been 
successfully attempted for several aspects. Thus, the micelles may be described as droplets 
of hydrocarbon liquid with the polar heads anchored at the surface with water, limiting the 
droplet size [5 ,6] .  On the other hand, free membranes may be described by effective surface 
hamiltonians, which treat them as geometrical surfaces with empirical thermodynamic 
parameters [7-IO]. Studies within this formalism have produced interesting advances in the 
understanding of the geometrical shapes of closed membranes (vesicles) and of the entropy 
associated with the fluctuation of the membrane. However, these approaches cannot be used 
to address questions which involve both microscopic and mesoscopic structures. The phase 
diagram for free membranes in a solution would require a consistent treatment of micelles 
and membranes at microscopic level, to get the total amount of amphiphilic molecules 
dissolved in water (either as micelles or as isolated molecules) when the membranes are 
at thermodynamic equilibrium. The same applies to many other problems in the physics 
of biomembranes [ll],  like the fusion of two membranes to form a single surface, the 
segregation of vesicles or the preferential nucleation on a substrate. Moreover, the empirical 
parameters used in the effective surface hamiltonians should be related at molecular level, 
e.g. the curvature and edge energies are not independent parameters and this may condition 
the threshold for the transformation of open membranes in closed vesicles 19, IO]. All thcse 
questions require a treatable microscopic model, which, keeping the essential features of 
the molecular interactions, may be used to study mesoscopic and microscopic aggregates. 
The model presented here goes beyond simplified latticegas representations [12-14] and 
Ginzburg-Landau theories 1151, which are useful stepping stones but have strong restrictions 
in the possible types of aggregates and in the relation with molecular models. 

The idea is to use the density functional formalism [I61 for the free energy, F [ p ] ,  and 
to describe the aggregates as local minima of the grand potential energy, C2 = F - pLN. 
at given temperature, T, and chemical potential p. In section 2 we present the simple 
density functional approximation used here and the method used to search for local minima 
of the grand potential energy. In sections 3 and 4 we study relative minima with planar 
and spherical geometries respectively, to describe flat membranes, vesicles and micelles of 
diffcrent types. In this approach, we may take advantage of the expericnce in the description 
of structured phases, like crystals [17, IS] and liquid crystals 119, 201, but we should point 
out an important difference which emerges in the study of the global phase diagram in section 
5. In any description of self-structured systems as inhomogeneous density distributions, we 
have to pin down the inhomogeneity to an arbitrary origin and orientation. The degrees of 
freedom associated to this choice should be taken into account in the total entropy. In a 
three-dimensional phase, like a crystal, there are only a few degrees of freedom associated 
with the position and orientation of the whole macroscopic system, and we may neglect 
them in the thermodynamic limit. However, if we describe micelles as bulges in the density 
distribution, the degrees of freedom associated with their position in space give an important 
contribution to the total entropy and they have to be included to obtain the global phase 
diagram, i.e. to calculate the density of micelles in the solution of amphiphilic molecules in 
water. But there is not a well defined separation between those degrees of freedom which 
have to be added and those already included in any approximate density functional, used 
to characterize the shucture of the droplets as local minima of the grand potential energy. 
We find in the literature different ways of tinkering with this problem. Some authors regard 
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the inhomogeneous density distribution as a description from the centre of mass of the 
aggregate, and add the translational degrees of freedom as those of a particle with the total 
mass of the aggregate [6] .  The trouble with that approach is that the prediction for the 
density of micelles in a solution of amphiphilic molecules depends on the mass of the 
amphiphilic molecules, through the ‘thermal wavelength’ of the micelles, while in classical 
statistical mechanics all the equilibrium properties associated to spatial distributions have to 
be independent of the particle masses. In other cases, the problem is hidden with the use of 
dimensionless densities, in terms of any natural parameter of the model [Zl]. In the context 
of nucleation theory, the separation between the two levels of description is rationalized 
by regarding the inhomogeneous density distributions as the local minima of a ‘coarse 
grained’ density functional. In the absence of any external symmcky-breaking potential the 
coarse grained free energy is degenerated with respect to the position of the droplets and 
the associated ‘Goldstone modes’ may be integrated to get the remaining entropy [ZZ], but 
we still lack of a well defined correspondence between the approximate density functionals 
and the coarsegraining length scale. The relative success of the theories following these 
different approaches is shown in the fact that, for well characterized molecular aggregates 
like droplets or amphiphilic micelles with a few hundred molecules, there is a large range 
of scales over which we may drop the uncertainty without qualitative changes. We have 
analysed the problem in a very simple model, presented in the appendix, for which we 
may compare the exact solution with approximate descriptions along the lines presented 
here. The comparison clarifies the problem and suggests a possible solution which is used 
in section 5 to get the global phase diagram of the system, linking the description of the 
molecular structure of the micelles with the density of these micelles in the solution. 

In the case of membranes the problem is weaker, because they extend over mesoscopic 
distances in two dimensions, and it has been analysed more carefully [23]. The few degrees 
of freedom associated to the global translation and orientation are irrelevant because we 
treat the membranes as ‘macroscopic’ objects with extensive thermodynamic properties. 
The trouble comes from their character of two-dimensional objects in a three-dimensional 
space. In the absence of external potentials or restrictions, a large free membrane will always 
be deformed, because the deformation energy goes to zero in the long-wavelength limit of 
the corrugation. The correlation in the orientation of different pieces in a membrane decays 
beyond a given distance, called the persistence length, 6. The membrane gains entropy 
with the cormgation, which is not included in the description as a fixed density distribution, 
either flat or with any other fixed shape. Theoretical analysis with surface hamiltonians 
give this length, 6, from the ratio between the curvature energy and ksT.  If the membrane 
linear size is much shorter than the persistence length we may consider it as essentially 
flat (or spherical), but in strong amphiphiles, the size is still large enough to treat them as 
macroscopic objects. Nevertheless, our results may also be used to provide the empirical 
parameters in a surface hamiltonian, which include the effects of corrugation with different 
techniques. 

2. Free energy density functional model 

Our objective here is to develop a minimal model for a system of amphiphilic molecules in 
water. The description of these molecules has to include the presence of opposite tendencies 
in each molecular side, but we neglect the role of flexible chains or other intemal degrees of 
freedom. We describe the amphiphilic as rigid anisotropic molecules with one preferential 
axis, its direction being given by a unit vector &. The distribution function of amphiphilic 
molecules, p ( r ,  e), gives the average density of molecules with orientation & and position T. 
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The interaction of the amphiphile with water is the driving force for the formation of 
complex aggregates, but we may simplify the description by considering only the distribution 
of the amphiphile and the effective interaction between them which results from the solvation 
forces induced by the water. We describe this effective interaction through apotential energy 
@(TI  - r 2 ,  01, &), which depends on the relative position and on the orientation of two 
amphiphilic molecules. As is usually done in molecular fluids [24], we may expand this 
potential in terms of independent rotational invariants, like the relative distance between the 
molecular centres, rl2 = lrl - ~ 2 1 .  the projection of the molecular axis on the direction of 
the relative position, GI . +zl and Gz. izl (with 621 = (rz - rl)/r12), and the angle $2 -$I 
between the projections of Ct and 2 2  in the plane perpendicular to 9 1 .  For a general pair 
interaction between molecules with axial symmetry, we have: 

m 

@ ( T I  - T ~ , C I , C ~ )  = ~ ~ , 2 ( r t 2 ) ~ ~ ( G I  .+ZI)P;"(-~~.+Z~) ei(h-+l)m (1) 
l , . l r=O m 

where P f ( x )  are the associated Legendre functions and the index m runs for Iml < 
The first term in the series is the isotropic potential energy &r), given by the full 

angular average of the interactions. In our case this should be essentially repulsive, because 
an attractive contribution would produce a segregation in water-rich and amphiphilic-rich 
bulk fluid phases, which should not appear, As the simplest choice of a repulsive isotropic 
interaction we take it to be the hard-sphere (HS) potential, @ H S ( r ) ,  with a sphere diameter 
which we take as the unit length. 

The next twin terms in (l),with .$:,(r) = til ( r )  = @I ( r ) ,  include the polar interaction of 
one molecule independently of the orientation of the second molecule. These terms are the 
basic driving force to the formation of micelles and membranes: the attraction of the polar 
head in the amphiphilic molecule towards the water molecules. In our effective description 
this is represented by a repulsion from other amphiphilic molecules, irrespective of their 
orientation, because their presence implies the absence of water. As a minimal model we 
may truncate the series (1) at this level to get 

min(h. W. 

@ ( T I  - Q. 01, &) = @ d r 1 2 )  + @ l ( r l z )  [(GI . +?I) - 6 2  .+21)] .  (2) 

A similar potential has been proposed by Telo da Gama [25] to study ternary mixtures of 
amphiphilic surfactant in water-oil systems, with polar interaction of the surfactant with 
the molecules of oil and water, plus isotropic, Lennard-Jones like, interactions among all 
the components to get the water-oil segregation. Here we begin with a binary system 
of water and amphiphile, and simplify it further to keep only the amphiphilic molecules. 
The effectiive polar interaction between them would arise from the direct water-amphiphile 
polar interaction in that model, through the molecular correlations. The simplification in 
our model allows us to include a better approximation for the free energy as a function 
of p ( r ,  G) and to search for different types of molecular aggregates. Instead of a simple 
local density approximation for the hard-sphere repulsion, we include a non-local density 
functional [26] which has proved to be very reliable for the description of packing effects, 
including the layering and the crystallization of the fluid at high density. This is of little 
importance in smooth fluid interfaces but in our case the packing effects have to appear 
in the size and structure of micelles and in the bilayer structure of membranes. The soft 
anisotropic interactions @ I  may be included in a mean field approximation, which has 
proved to be qualitatively correct in the description of interfaces and other inhomogeneous 
systems [16]. 
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The molecular distribution function is factorized as p ( r ,  C) = p(r)a(r ,  C), with the 
density distribution p ( ~ )  and the normalized distribution of molecular orientations U ( T ,  C). 
The approximation for the free energy functional is 

FMr, %I = F H S [ P ( ~ ) I  fkBT j d f l  I d G I  p(rl)~(r1,G1)log(4na(rl, GI)) 

+ Sd.1 S d G t  j d n  P ( ~ I ) ~ ( ~ I , C I ) P ( ~ Z ) @ I ( ~ I Z ) ( ~ Z I  .Cl) (3) 

where we have separated the contribution of the isotropic hard-sphere fluid, the ideal gas 
contribution of the molecular orientations and the mean field contribution of the anisotropic 
interaction. 

The HS free energy depends only on the density distribution p ( r ) ,  it includes the 
translational contribution from the ideal gas free energy and the free energy excess due 
to the packing restrictions. The later is approximated [26] by the free energy excess per 
molecule, +,,s(p), at an ‘average density’, p(r): 

F H S [ P ( T ) ~  = k a T / d r t  ~ ( 7 ‘ 1 )  (Iog(p(n)) - 1) + k s T / d r l  P ( ~ I ) + H s ( P ’ ( T I ) ) .  (4) 

The truncation of the interaction potential (1) at the level of (2 )  pays off now by an 
important simplification of the problem. For a given temperature and chemical potential we 
have to search for local minima of the grand potential energy 

n = F - p N  (5 )  
with respect to the dismbution function p ( r ,  C), but the minimization with respect to the 
distribution of molecular orientations a(r, 0)  may be done analytically: 

where Q(rl) is a Lagrange multiplier to achieve the normalization of a(q, GI) integrated 
over molecular orientations. This leads to 

where the vector field a(rl)  is defined as 

By substitution of (7-8) into (3) we get a free energy density functional, which is already 
minimized with respect to the molecular orientations: 

F[p(r)I= MinIFMr,  2)IL 

where the effects of the anisotropic interactions are described through the auxiliary field (8). 
Notice that although we started in (3) with a mean field description of the anisotropic pair 
interactions, hence proportional to p(r l )p(rz) ,  the average over the molecular orientations 
induces in (9) higher-order terms in the density distribution, which may be interpreted as 
effective many-molecule interactions. These t e m  stabilize finite molecular aggregates, 
which do not grow into macroscopic bulk phases. The same type of effective free energy 
has been used in lattice models [12, 13, 141. In the absence of external potentials, this 
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density functional always has a stationary grand potential energy for a homogeneous density 
distribution p ( r )  = p.. which gives a = 0 in (S), and it  represents a phase of surfactant 
molecules with random orientations, which in our model becomes equivalent to a HS 
fluid. The density of this homogeneous solution isused to control the chemical potential, 
PO = PHS@O), in OUT search for inhomogeneous density distributions. 

For low values of p (and po) the homogeneous phase represents a dilute solution of 
amphiphilic molecules in water and we may find other local minima of the grand potential 
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energy, 

for non-uniform density distributions, which represent the different types of molecular 
aggregates. In the next two sections we search for those minima with two different 
geometries, planar and spherical. In each case, the minimization of (IO) is done by 
conjugate gradient techniques, from a judicious initial guess for the density distribution, 
or through a variational minimization within a functional family. The structures obtained 
and the thermodynamic interpretations are different for each case, but they result from 
the same microscopic model (3), and we may relate the properties of very different types 
of aggregates by making reference to their common thermodynamjc parameters. In this 
work we always stay in the limit of dilute amphiphilic solutions, po 6 0.05 in units of 
the HS diameter, and the aggregates to be found will form ideal solutions of micelles, free 
membranes or vesicles, but without important interactions between the aggregates. The case 
of dense amphiphilic phases is left for future work. 

It remains to specify the function @ , ( r )  which in our model mimics the complex 
molecular interactions of real amphiphilic molecules. We have studied several functional 
forms, the simplest one is an empty core Yukawa potential, 

with r in units of the HS diameter. The coefficient C represents the maximum absolute 
value of the anisotropic interaction energy between two amphiphilic molecules, and we take 
it  as our unit of energy and temperature. In accordance with (2) the function @ , ( r )  is 
positive if the vector 0 is defined as pointing from the hydrocarbon tail towards the polar 
head of the molecule. The parameter A m e a s u a  the relative range of the polar interaction 
with respect to the isotropic hard core and we present results with several values of this 
parameter. We have also explored the behaviour of the system for other functional forms, 
like a double Yukawa and Lennard-Jones type of interactions, to separate the maximum of 
Qj(r)  from the hard core r = 1, and some results are commented below. 

3. Planar membranes 

We search for non-trivial relative minima of (10) with a density profile, p(z) which depends 
only on one Cartesian coordinate z .  The vector field a(r) is parallel to the axis director 
2, and the distribution of molecular orientations will depend only on z and G - 2. The 
molecular orientation order parameter, 

~ ( z )  = J diL a(z ,  iL) iL. 2 (12) 

measures the degree of 'polar' order with respect to the z axis. Thus, = 1 and -1 
represent preferential orientations parallel and antiparallel to the direction given by a S. 
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The density profile should go to the homogeneous density po (and random orientations 
q = 0) for z far away from an arbitrary origin, to represent an isolated planar aggregate of  
amphiphilic molecules. The search is done by discretizing z in small steps (up to 100 per 
HS diameter) and minimizing the grand potential energy (IO), with a conjugated gradient 
method from an initial density profile with a bump around the origin. From the density 
profile at the relative minimum we may use equations (7) and (8) to get the distribution of 
molecular orientations. Depending on the values o f  the temperature and chemical potential, 
the minimization may lead to the trivial homogeneous limit or to a structured profile, as 
shown in figure 1, with two parallel layers of molecules with opposite orientations, typical o f  
the bilayer structure in amphiphilic membranes. Once we have found one o f  these structures 
we may also use it as an initial guess for different thermodynamic conditions. In any case 
we never found more than one type of stable structure for the same values of T and PO, 
unless the initial guess contained several, well separated, density peaks which may generate 
different parallel membranes. At higher values of the bulk density PO the membranes may 
pack into a modulated dense phase. In the limit of low bulk density, the stable isolated 
membrane may be regarded as an 'interface' between two identical phases. The interfacial 
excess of grand potential energy per unit area, A, 

(13) 
Qtp(z)l- WPoI 

A o ( T ,  Po) = 

is the surface tension o f  the membrane. For Q > 0 the membrane is stable only if its total 
area A is kept constant by an external constraint, and the absolute minimum o f  the total grand 
potential energy corresponds to the absence of membrane. However, by increasing the bulk 
density or decreasing the temperature we may lower Q down to zero, along a line pi4(T) in 
the (T .  PO) plane. The coexistence line may also be calculated within a parametrized family 
o f  variational density profiles, which improves the computational efficiency (particularly 
at low po) without important changes in the results. We have used profiles parametrized 
as two gaussian peaks, with their width, separation and total integral used as variational 
parameters. In figure 2 we present the coexistence line for the Yukawa parametrization 
(11) for @t(r ) ,  h = 3, with the bulk density changing from po = lo-' to 0.05 (in units 
of  the HS diameter). At high density we compare the results of the conjugate gradient 
minimization with that of the gaussian parametrization, which is used at the lower values 
of pa. Along this line a free membrane will be at equilibrium with the bulk dilute solution 
of amphiphilic molecules. The total grand potential energy will be independent of the area. 
Tresspassing across the equilibrium line the membranes would have negative excess of 8, 
and they would grow without limits other than the total amount of molecules present in 
the system. In this respect we may consider the membrane as a phase at coexistence with 
the dilute solution, with the peculiarity that it is only extensive in two dimensions. If the 
total amount of amphiphilic molecules present in the system is large enough, the membrane 
would form with a total area A such that the remaining density in the bulk stays exactly at 
the coexistence line. 

The structure of the membrane changes smoothly along the coexistence line, but always 
keeping the structure with two well defined molecular layers, and nearly saturated opposite 
polar orientational parameter q % &l. There is a shallow depletion of molecules in the 
neighbourhood of the bilayer, but given the low bulk density it is hardly visible at the scale 
o f  the density peaks. The two peaks in the density profile o f  a bilayer become sharper at 
lower temperature and bulk density. The two-dimensional density o f  each layer in the the 
membrane, pp. defined as half the excess of molecules per unit area, is controlled at low 
T and po by the two-dimensional packing, it becomes independent of the value of h (as 
shown in figure 3(a)) and it takes values close to or above the melting density for hard discs. 
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v 
N 

c 

-4 -2 0 2 4 
z 

Figure 1. Density profile. p ( z )  (full line) and polar order p m c t e x .  s ( r )  (dotted line). for a 
bilayer membrane at equilibrium. o = 0. with a bulk density pcl = 0.05 and a Yukawa interaction 
with A = 3. The two layen in the membrane have oppasite orienlations wiih q Z 50.9, the 
regions with strong order in the moleculv orient3*ion go well beyond the layers, over the regions 
where the bulk density is depleted below the bulk value. The HS diameter is used to provide 
the units of distance and density 

0.14 1 
- 
- 

0.12 - - 
Membranes shrink - 

P 0.10 - 
- 

0.08 - - - 
Membranes grow - 

I 111111111 11111111 I1111111 I 1 1 1 d  I lluu 
- 

lo-' io-& 10-~ 10-~ 1 0 - ~  io+ io-' 
Po 

Figure 2 Equilibrium line for bilayer membranes with polar interaction range A = 3, in the 
Yt&awa potential. The temperature is in units of Clks ,  equation (11). and the bulk density po is 
in units of the HS diameter. Along the line, piq(T) ,  we gel membranes with zero surface tension, 
calculated through a v-tional minimization of R with a double gausrian p m c t r i w t i o n  of 
the density profile. The squares g v e  the mulfs with the full conjugated gradient minimization 
with respect to p k )  
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0.7 1 
0.6 1-1 

10-7 10-8 10-5 10-4 10-3 10-2 10-1 

PO 
Figure 3. Parameters of the bilayer membrnnes along the coexistence lines for two values of the 
polar interanion range A = 2 (dotted line) and 3 (full line) The horizontal axis gives the bulk 
density PO, but it implies also a change in the tempemure. to keep along the equilibnum line 
(figure 2). In (a) We present the two-dimensional density of each @. pp. in the density profile 
of the membrane, i.e. half the excess of molecules per unit area. in uniu of the HS diameter. 
In (b) we p m t  the distance benveen the two peaks. dp. which is always very close lo the HS 
diameter, but w i h  different Vends for the two values of A. 

This means that along the coexistence line there should be a transition from liquid to solid 
membranes, which is not included in our variational minimization of the grand potential 
energy. As T and PO increase we observe, for A = 3 in figure 3(a). a decrease of p,, in 
a regime where the density of the membrane depends on the range of the soft anisotropic 
interactions. The separation between the two layers in the membrane is always close to the 
contact distance of the HS cores in each layer (figure 3(b)), but the small variations along 
the coexistence line have different trends for A = 2 and 3. 

The structure of the membrane changes qualitatively if the parameter h is small enough. 
For A 1.5 we observe the appearance of structures like 'tetra-layers' with four peaks 
in the density distribution, because the polar interaction is acting through distances of 
several times the molecular size. This is clearly unphysical, given our interpretation of the 
amphiphile-amphiphile interaction as an effective way to represent the presence or absence 
of water near each amphiphile molecule. Thus, we restrict ourselves to values of A 2 1.5. 
If the bulk density PO is increased we found that the homogeneous bulk becomes unstable 
and the system develops a layered structure, which may be regarded as a signature of a 
lamellar phase. A prelude of this phase is observed in the presence of a very weak effective 
attraction between two parallel membranes, induced by shallow depletion in the density 
profile in the neighbourhood of each bilayer. For the bulk densities considered here this 
attraction (proportional to po) is so small that it would be easily overtaken by other effects, 
like the entropic Helfrich interaction [27] which creates an effective repulsion between 
membranes. 

We have found the same qualitative behaviours for membranes with a broad variety of 
functional forms for the interaction and the inclusion of some higher-order terms in 
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Po 
Figure 4. Equilibrium lines ptq(T)  for bilayer membranes (full lines) and micellation lines 
$'(T) (dolled lines) for several moleculm interactions. The lines are represented in the 
(log(pg). 7-') plane. in units of the HS diameter and the suength of the polx interaction 
Clkl in the Yukawa potential ([I). All the results include polar and qUadNpOh interactions. 
equation (15). with the same Yukawa potential and with %(r)  = q Q ! ( r ) .  In (A), (B) we 
present the results for A = 2 and WO values of the quadrupolv interaction 9 = 0.3 (A) and 
q = 0.5 (B). while (E,) (C) correspond to the same value of q = 0.5 and two different values of 
the interaction range. (B) A = 2. and (C) 1 = 1.5, the curves @) have been shifted one vertical 
unit down to avoid overlap, 

( I ) .  The coexistence line changes with the interaction potential but always keeps the same 
trends, which are not far from straight lines in the ( T I ,  log(p0)) plane, as shown in figure 
4. At this stage we could conclude that the detailed form of the interaction potential (11). 
seems to be of little relevance for the qualitative properties of the system. However, the 
results presented in the next section for vesicles and micelles show that the global behaviour 
of the system is much more sensitive to the details of the interactions. 

4. Vesicles and micelles 

We turn now to search relative minima of the grand potential energy (IO) with spherical 
symmetry, p ( r )  = p(r) .  The vector field a(r) is radial and the orientational distribution 
depends only on r and i.. G. We may define the 'spherical' version of the order parameter q 
defined in (12). The numerical method used to locate these minima is similar to that used in 
the planar case, although more cumbersome to implement. We have used both conjugated 
gradient minimization with the radial density distribution discretized over a mesh, and 
several variational parametrizations to explore more efficiently the effect of the different 
interaction potentials. Our motivation is twofold: the study of vesicles and micelles. 

First we may expect to find relative minima for structures similar to the planar 
membranes but closed on a sphere of radius R, which is large compared with the molecular 
size. This would represent a vesicle; they are known to form spontaneously in these systems 
[9]. The grand potential energy of these vesicles should have an extensive term, o A ,  where 
A = 4nRZ is the total area and U is the surface tension of the planar membrane (13). The 
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effect of the curvature should be proportional to R-’ times the total area, which gives a 
constant independent of the radius R. In the language of effective surface hamiltonians [ 101 
we have: 

R,(R) = 4nRZu + 4n(2 K + K ~ )  + terms of order R-’ . . , (14) 

where K and K~ are the elastic constants associated to normal and gaussian curvatures 
respectively. The study of these vesicles within our density functional approximations 
would allow us to get the curvature energy and its variation along the coexistence line of 
free membranes. In the spherical case the two constants appear in the linear combination 
K$ = K + K~ 12, to which we refer below. The independent determination of the two 
constants could also be made within our approach, by considering density distributions with 
cylindrical symmetry and/or periodic corrugations in a flat membrane. 
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Figure 5. Radial density profile. p(r ) ,  (full line) and polar order parameter. ~ ( r ) ,  (dotted line), 
for a spherical vesicle with a bulk density po = 0.05 and for a polar interaction with a Yukawa 
mnge parameter i = 3. The asymmetly between the inner and the outer layer. r e f l a  the 
c w a m  effects in the profiles. 

Starting with adequate initial guesses (e.g. the planar density profiles of section 3, 
centred around a radial distance r = R) it is easy to generate local minima of the grand 
potential energy, which have some asymmetry between the inner and the outer layer (figure 
5) but still keep the same qualitative features of the planar membrane. Notice that in this 
geometry there is no restriction in the total area of the vesicle, the radius R may be defined 
somewhere in the middle of the bilayer shllcture, so that R, and hence the nominal area 
of the vesicle, may change with the functional variable p ( r ) .  If we try to study a vesicle 
very far away from the line of coexistence for free membranes, the minimization of R with 
respect to the density profile would lead to growing (for U e 0) or decreasing (for U > 0) 
values of R, up to the limit of our numerical mesh or down to the molecular size. Only 
at the coexistence curve, U = 0, should we expect to stabilize vesicles, with a total grand 
potential energy which becomes constant independent of the radius for large R. In practice, 
the discretization of p(r )  on a mesh induces some ‘numerical roughness’ in R and in the 
neighbourhood of the free membrane coexistence line we may obtain stationary vesicles 
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with the size controlled by the initial input. With the minimization of (10) restricted to a 
variational family it  is simple to include R as a fixed parameter (e.g. defined as the central 
point between the two gaussian peaks) to obtain vesicles of any radius. In any case for values 
of R larger than six or eight HS diameters, the excess of grand potential energy follows 
rather well the linear behaviour with the area (14), as shown in figure 6. From the slope of 
these lines we may get the surface tension, in agreement with its independent calculation 
€or planar membranes. The extrapolation of the lines to R = 0 gives the curvature energy 
~ X K ~ ,  which at equilibrium (U = 0) becomes independent of the arbitrary choice of the 
nominal radius or area of the vesicle. 
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Figure 6. Excess of grand patentid energy, +9 ASl = ACl/ksT. for vesicles 85 B function of 
the totd are% A ,  in units of the HS diameter. The data correspond to pure polar interaction 
with 1 = 2 in the Yukawa interaction. equations, (2) and (I I). with bulk density po = 0.02, in 
units of the HS diameter, and three different temperatures very close to the equilibrium line for 
membranes: knTfC = 0.1908 (full triugles), 0.1913 (open squares) and 0.1918 (full circles). 
The stnight lines are the linear fils to the data u'ilh the four largest values of the ma. The 
slope is the surface tension of the membme (which changes sign with the temperature) and the 
exVapopoLUofl to A = 0 gibes  the cwarurc energy Snx,/(kaT), which is very similar for the 
three tempcratturrs. The actual value of ASl for vesicles of small area moves away from the 
straight line towards lhe g m d  polentid excess of micelles. 

Our first results were puzzling because we got negative curvature constants. This would 
imply not only the intrinsic instability of a flat membrane, but also that the system could 
always reduce its grand potential energy by splitting a vesicle into two or more pieces, 
because each one would contribute with a constant amount 8ry, to S2, independently of 
their radius. Of course, there should be a minimum radius for a vesicle, when R becomes 
less that 2 or 3 times the width of  a membrane the system would be a lump of amphiphile 
molecules, without any resemblance to a spherical surface. It is relatively easy to find 
spherical density distributions of this type as local minima to the free energy. They do 
not have two concentric molecular layers with opposite orientations, as in vesicles, instead 
all the molecules are oriented with the head pointing out of the centre, a few examples 
are shown in figure 7(aHc). It is clear that these molecular aggregates correspond to the 
spherical micelles of the amphiphile molecules. We found an interesting variety of these 
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Figure 7. Radial density profiles and polar orientation order panmeters for several types 
of micelles. The full lines are ( p ( r )  - fl,)rz. which give the reprerentaion of the density 
distribution better lhan p ( r ) .  The dotted lines give q ( r ) ,  which is always positive, in conmt 
with vesicles and membianes. The three figures Correspond to different interaction potentials 
and thermodynamic parameters: (a) uses Yukawa polar and quadmpolar interactions. with 
A = 3. and q = 0.5, buUt density po = 0.01 and has excess of ANm = 16.8 molecules 
and AQ,/(ksT) = -1.57, the p~& a r = 0 “ i n s  a molecule surrounded by a spherical 
layer I I sz 1 with a small shoulder. Figures (b) and (c )  illustrate the difference between 
‘fluid‘ and ‘solid’ micelles, they correspond Lo the same tempemure and interaction potential. 
which includes polar and qUadNpOhr interaction with a double Yukawa parameuization of 
0 l ( r . )  = 0.501 ( r )  and two different bulk densities: (b) represents a ‘fluid‘ micelle for f i r  = 0.01 
and (c) a ‘solid’ micelle for RI = 0.012. 

micelles, depending on the thermodynamic parameters and on the details of the interaction 
potential, they have well defined density profile, excess of molecules AN,, and excess of 
grand potential energy An, over the homogeneous bulk. The smallest type of micelle we 
have found has a radial density profile p ( r )  with a narrow peak in r = 0 which integrates to 
about one molecule, and a layer at a distance slightly larger that the hard-sphere diameter. 
which contains about 13 molecules. This is very close to the structure of a compact cluster 
of hard spheres, which reflects the good quality of our non-local description of the HS free 
energy in (3). Depending on the thermodynamic parameters, micelles may grow larger, 
either as a relatively unstructured lump (figure 7(b)) or with density strongly structured 
in concentric layers (figure 7(c)) but always with positive orientational order parameter 
q. We have observed micelles with up to a few hundred molecules but it is clear that 
their smcture does not allow a continued growth. In the density functional space they are 
separated from vesicles by the inversion of the polar order in the internal molecular layer, 
and the depletion of the inner core. At particular temperatures we have observed two well 
differentiated types of micelles at .the same thermodynamic conditions and, playing with the 
form of the interaction potential, we may even find ‘micellar transitions’, where the two 
different structures compete to be the most stable cluster. An interesting example is given 
by the coexistence of micelles with smooth and with sharp structure, like those illustrated in 
figures 7(b) and 7(c) respectively. With the simple Yukawa potential (11) the second class 
of structure is usually more stable than the first one, but with a smoother form for ( r ) .  
like a double Yukawa with opposite signs, we may change the balance and also make them 
coexist with the same value of ADm. The most obvious interpretation of this fact is that 
we have ‘fluid’ and ‘solid’ micelles. The characterization of the latter is poor because our 
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variational parametrization of the density forces perfect radial symmetry, but we know that 
the density functional used for the HS free energy is quite accurate in the description of 
crystalline solids, if it is minimized within the appropriate family of density distributions. 
Of course, the excluded volume effects for real amphiphilic molecules are quite different 
from those of the hard spheres in our model and we should not take the detailed form of the 
micelles as a description of real amphiphilic aggregates. A more realistic description may 
be obtained using anisotropic hard-core interactions, but it would take our model out of our 
original aim of setting up a minimal model with different types of aggregation structures. 

The micelles have an excess grand potential energy An,, oyer the homogeneous bulk, 
which depend on 7' and po.  At the equilibrium line An, is always well below the curvature 
energy ~ Z K ,  which gives the limit of (14) for vesicles of very small size, as may be expected 
since very small vesicles should reduce their grand potential by getting rid of the inner layer 
and becoming micelles, this trend is clear in figure 6, with the grand potential excess of small 
vesicles falling away from the straight line Aa + ~ J I K ~ .  The total concentration of micelles 
in the solution may be calculated if we treat them as independent particles with internal 
grand potential energy AS2, in chemical equilibrium with the solution of isolated molecules, 
although there is some uncertainty in the prefactor (as discussed in the next section), this 
density is proportional to exp(-AQm/ksT), so that in the (T, po) phase diagram (figure 4) 
we may draw a 'micellation line', pt ' (T ) ,  where Ast, changes sign. If the system presents 
more than one type of membrane, the relevant micellation line is given by the most stable 
aggregate. For po < pp(T) ,  the micelles have positive excess of grand potential energy 
and they are scarce, for po > p p ( T )  they have negative excess of grand potential energy 
and they are abundant. Although there is not a sharp change, the exponential dependence of 
the micelle density on Anm reduces the interesting region to a narrow band around p r ( T ) ,  
away from it we have no micelles at all, or there are so many that they interact with each 
other and form a dense phase of amphiphilic molecules. With our initial model interaction 
we found that p p ( T )  was always well below the coexistence density for planar membranes, 
as is consistent with the negative values of the curvature energy. The conclusion was that 
the system would contain free molecules, micelles or dense phases, but not stable free 
membranes, despite the apparently correct phase diagram presented in the previous section. 
The negative curvature energies and the relative position of the micellation and the planar 
membrane equilibrium lines, show that the choice of the molecular interactions in our model 
is far from being irrelevant. Some choices of the potential energy O ( r .  & I ,  &2) may give a 
phase diagram for planar membranes which is qualitatively correct, but they give values of 
K* and An, which make the membranes unstable. This is the behaviour observed in many 
real amphiphilic solutions, where the micellar solution condensates directly in lamellar or 
hexagonal phases [4]. However, in some systems of strong amphiphiles the free membranes 
and vesicles coexist with the solution. In our model we searched for them with variations 
in the interaction potential. Changes in the form of the polar potential ( I  I )  were enough to 
produce positive curvature constants, without major changes in the phase diagram of planar 
membranes, but we always had #(T) c piy (T ) .  

The global stabilization of the membranes was achieved with the inclusion of higher- 
order terms in the series expansion of the interaction potential (1). We included the twin 
terms with indices (II = 2, I ,  = 0, m = 0) and (11 = 0, l2 = 2. m = O), 
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@(vi - ~ z .  GI, ~ z )  = a H S ( n 2 )  + ~ i ( r i 2 )  [pi(&, .ezi)  + pi(-&, . en)] (15) 
k1.2 

where f , ( x )  are the Legendre polynomials and the function %(r) = = &r) 
represents the interaction of the quadrupolar order in one molecule with the isotropic average 
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of the other molecule. This term may be used to include the effect of anisotropic molecular 
cores, with stronger repulsion when a prolate molecule approaches another along its axis 
than when it approaches in a direction perpendicular to the molecular axis, which is a 
relevant factor for the curvature energy [ 5 ] .  The minimization with respect to the molecular 
orientations is still done analytically, with two auxiliary fields now: the vector a(r) defined 
in (8) and a tensor B(r )  with components 

where the indices a. j3 run over the three Cartesian coordinates and ?fl are the components 
of the unit vector i ~ l  = (TZ - T I ) / ~ ~ z .  The tensor I3 is conjugated to the nematic order 
parameter [28]; it is symmetric and has zero trace. Both for planar and spherical geomehies, 
the direction of the vector a and the main symmetry axis of B are given directly by the 
symmetry of the density distribution, and the problem is reduced to calculate the modulus 
n ( r )  = la(r)[ and the largest eigenvalue of 8, which we call b(r). The free energy density 
functional, already minimized with respect to the molecular orientations becomes: 

F[p(r)l= Min(F[p(r, %I tu 
= Fxs[p(r)l - b T  d v ( r )  log(Q(a(r), W)))  (17) s 

Q(Q, b)  = - 1’ dxexp(aPl(x) + bPz(x))  

with the function 

(18) 

which may be calculated in terms of the error function or the Dawson integral. There is no 
physical reason not to include in (15) other terms, like the ‘polar-polar’ interactions, { ; l ( r ) ,  
{p l ( r )  and e;, ( r ) .  but any term coupling the molecular orientations of the two interacting 
molecules would make impossible the analytic minimization of the free energy with respect 
to the distribution of molecular orientations; we have chosen to keep this simplification. 
Moreover, we have taken @ 2 ( r )  proportional to @ I  ( r ) ,  with a proportionality factor q,  which 
may be used to tune the properties of the system; the results described above correspond to 

In figure 4 we show the lines for the coexistence of planar membranes (CJ = 0) (full lines) 
and for the micellation line (An, = 0) (dotted lines) for several values of q and A.  The two 
lines are nearly parallel in the plane (logpo, T-]), which produces a strong sensitivity of 
the intersection with the parameters of the interaction potential. For example, for A = 2 the 
lines cross each other at po = 0.018 for q = 0.5 (curves B) but the intersection moves below 
po = lo-’ for q = 0.3 (curves A) and it has gone out of any reasonable range for the simple 
case q = 0 discussed above. Keeping q constant, the intersection also depends strongly on 
the range of the Yukawa potential. For h = 1.5 and q = 0.5 (curves C) the intersection 
is at po = 0.0016 and the two lines are much closer to each other than for h = 2 and the 
same value q = 0.5 (curves B). In any case, the free membranes described in the previous 
section are truly stable along the line #(T) for values of po below the intersection with 
pC(T).  The curvature energy is always positive, and it increases as po and T decrease, as 
shown in figures 6 and 8 for h = 2 and q = 0.5. Molecular interactions with a lower value 
of q give lower curvature energies. The persistence length for the local orientation of the 
membrane is estimated with effective surface hamiltonians [4] to go like e x p ( 4 i r ~ / 3 k ~ T )  
in molecular units. Along the coexistence line this persistence length goes from loz9 at 
po = to about lo6 at the intersection with the micellation line, all in units of the 
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q = 0. 
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Figure 8. Spherical CUNW energy, K$ = K + nb/2 along the coexistence line for membranes 
with polar and quadrupolar inreractions (15) with the Yukawa potential with A = 2 and q = 0.5. 
The full line giver f ix,  = K, / (ksT)  and the dotted line gives K,/C, in units of the intenclion 
strength. 'The horizontal axis gives the bulk density, in units of thc HS diameter. but it also 
implies changes in the temperature to keep on the equilibrium lme for membranes. as shown in 
figure 4(b). 

HS diameter, Therefore, membranes of mesoscopic and even macroscopic sizes are well 
describcd by their representation as planar or spherical objects, with very little corrugation. 
As pEq(T) approaches the intersection with ,@(T)  the membranes will coexist with an 
increasing number of micelles, as well as with the rarefied isolated amphiphilic molecules 
with density PO. In the next section we present the global phase diagram which arises from 
this coexistence of different aggregates. 

We have obtained results similar to those presented here for other forms of the interaction 
potential. Within the restrictions which we have already mentioned, they show the same 
qualitative features. The line of equilibrium for Free membranes and the micellation line are 
never far from each other. and there are not always stable free membranes. The structure 
of the most stable micelles is more sensitive to changes in the interaction potential. The 
presence of a narrow maximum in 01 ( r ) ,  for r sz 1, favours the 'solid' micelles, with strong 
internal structure, while the 'fluid' micelles may be stabilized by interaction potentials with 
a smoother shape, which may be obtained with double Yukawa parametrizations. 

5. Global phase diagram for membranes and micelles 

In the preceding sections we have described a density functional model for a system of 
amphiphilic molecules, for which Q has a large variety of local minima. Besides the 
trivial homogeneous density, which represents a dilute solution of independent molecules, 
we have characterized three types of molecular aggregates: planar membranes, spherical 
vesicles, and micelles of different types. Planar membranes and vesicles may be treated 
as 'macroscopic' phases in two dimensions, with extensive properties proportional to their 
area, and they coexist with the dilute bath when their surface tension U vanishes. As 
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in the case of ordinary phase coexistence, the thermodynamic state of the system in the 
grand-canonical ensemble becomes degenerate: planar membranes and spherical vesicles 
of any size may appear if a reservoir provides the molecules to build them. The canonical 
ensemble gives a more realistic picture, with the membranes or vesicles growing from the 
molecules in the solution, until the bulk density is depleted to the equilibrium value #(T). 
The total area of the membranes is then fixed and the equilibrium shape will be determined 
by the ‘marginal’ contributions: the edge excess of grand potential energy and the curvature 
energy, SXK,, of closed vesicles. If the total amount of amphiphile in the system is only 
enough to build up a small membrane, the equilibrium shape would be a planar disk to 
minimize the edge line. If there were more molecules, the membrane would close itself 
into a vesicle, ‘paying’ the fixed curvature energy to avoid the edge [9]. As we said in the 
introduction we are pinning the molecular aggregate to a particular position and orientation. 
and we restrict its shape to planar or spherical symmetries. In this way we are neglecting 
the entropy associated to the fluctuation of the shape which, in the long-wavelength limit. 
would delocalize the membrane. This effects may be included within an effective surface 
hamiltonian, as capillary waves may be added to the ‘intrinsic’ liquid-vapour interface 
described by a density functional approximation, but there is always the uncertainty about 
the cut-off for the fluctuations included at the microscopic level. Nevertheless, as in the 
case of liquid-vapour interfaces, there is a reasonable window in the size of the membrane 
in which we may neglect these effects without major changes in the caexistence phase 
diagram. 

The case of micelles is qualitatively different. They have well defined sizes, excess of 
molecules AN, and excess of grand potential energy An,,,. A single micelle cannot be 
considered a macroscopic phase, because it  has no extensive properties, they have to be 
considered as ‘microscopic’ molecular clusters. The ‘true’ structure of the homogeneous 
solution of amphiphilic molecules in water would contain these micelles, as well as isolated 
amphiphilic molecules and any other possible cluster structure. If we had a much better 
approximation for the density functional free energy, which were able to include the effects 
of simultaneous correlations between AN,,, molecules, the homogeneous bulk phase would 
contain the micelles directly. However, our ignorance of such density functional free energy 
forces us to look for approximations linking the two levels of description. Our simple density 
functional does not include the correlations between many molecules, but it gives a good 
description for inhomogeneous systems and any correlation structure may be transformed in 
an inhomogeneous density distribution by an external pinning potential. The existence of a 
relative minimum of the grand potential energy for a non-uniform density distribution with 
low values of An,  is a signature that this particular structure may be produced by a very 
small pinning potential and it should be a very frequent correlation structure. However, the 
approximate density functional description of the micelle does not give a clear separation 
between the internal degrees of freedom and those associated to the collective movement 
which should be added. 

Here we are considering only the case of dilute solutions, which allows us to neglect 
the interaction between micelles and to treat them as the components of an ideal gas. The 
configurational entropy per unit volume of the system with a density of micelles, p, is 
given by: 

&/v -kBpm[b(pm U,) - 11 (19) 

where U, is the ‘configurational unit cell’ volume used to transform the volume in the 
classical phase space into a dimensionless number of states. All the uncertainty associated 
with the mixing of the two description levels is contained in this parameter. The equivalent 
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unit cell volume for a single amphiphilic molecule uo. should appear in the ideal gas 
free energy (4), but we know that within classical statistical mechanics the value of uo is 
irrelevant for any measurable property, we may always get rid of it as a trivial shift of the 
origin for the chemical potential. This was done in (4), taking a dimensionless density in 
units of the HS diameter, dHS, and transferring the irrelevant constant kBT log(u0d;;) into 
the chemical potential p. We may interpret the free energy excess AF,, in the density 
functional description of micelles, as fhe internal free energy of the aggregates and (19) 
as their translational entropy. Then it is straightforward to get the density of micelles at 
chemical equilibrium with the bath of amphiphilic molecules. As we may assemble a new 
micelle from AN, free molecules, the chemical potential of a whole micelle is ANm times 
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CLO = P H S ( P O ) ,  which gives 

where U, gives the inverse volume dimension of the density pm. The exponential 
dependence on AQ,  dominates the variation of pm and this fact was used in the previous 
section to identify the 'micellation line', given by A n ,  = 0, as the location of the narrow 
band, in the ( T ,  po) plane, since the beginning of the formation of micelles to the saturation 
of the system with so many micelles that they start interacting with each other. 

Nevertheless, the global phase diagram of the system should give the total concenhation 
of amphiphilic molecules in the solution, pt, when the membranes are in equilibrium. From 
the line piq(T)  obtained in section 2, we obtain a line pfq(T), through the relation: 

(21) 
which requires the specification of U, in (20). As we said in the introduction, the problem 
has been addressed in different ways in the literature. If we interpret that the density 
functional approximation gives a 'centre of mass' description of the micelle, we are tempted 
to get the entropy (19) as that of a free particle with the total excess of mass of the micelle, 
AN, m,  where m is the molecular mass of the amphiphile [6]. Then ti, is associated to 
the 'thermal wavelength' of a molecule and a micelle, i.e. 

PI(PO. T )  = PO + Pm(P0. T )  A N ~ ( P o +  T )  

h3 
[ 2 ~ k ~ T A N ~ m 1 ~ / ~ '  U, = A$ = 

However, we are working in classical statistical mechanics, and all the equilibrium properties 
associated to the position and spatial correlation of molecules should be independent of the 
molecular mass, which goes away in the momentum integrals, and is of course independent 
of the value of A. It is hard to believe that the density of micelles in a solution of amphiphilic 
molecules in water, at room temperature, is controlled by quantum effects, so it is unlikely 
that equation (22) is the answer to our problem. Intuition may suggest that U, has to be 
related to the 'natural' length units given by the intermolecular potential, i.e. the 'size' of 
the molecules, so in units of the HS diameter L!, should be proportional to AN:, with a 
not too large value of (ay(. This intuition may be combined with (22) to indicate retention 
of only the dependence on the number of molecules, U, = AN, in the 'natural' units of 
volume 1211. 

In the context of droplet nucleation and the use of 'coarse grained' density functionals, 
one may integrate over the 'Goldstone mode' associated with the position of the droplet 
[22],  which leads to a volume U, 

-3/2 . 

r .  " 
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The proportionality factor is unknown, because it would depend on the ‘coarse graining’ 
length which may be associated with our approximate density functional, which again 
we may hope is not very different from the molecular size. For a droplet with a nearly 
homogeneous density everywhere except in the surface, equation (23) gives U, - AN;’, 
very different from (22), although for a vesicle they would agree. In the case of micelles, 
the value of U, given by equation (23) depends strongly on the internal structure of the 
micelle. Thus for a ‘solid‘ micelle, with strong structure of concentric layers, the result 
of (23) may be many orders of magnitude smaller than for a ‘fluid‘ micelle of the same 
size. Thus, equation (23) would give a density of ‘solid‘ micelles which is many orders 
of magnitude larger than that of coexisting ‘fluid’ micelles, with the same value of AQ,. 
This unphysical result reflects the lack of connection between the approximate description 
of the free energy in (3) and a coarse graining scale. 

In the appendix we present a simple model which clarifies the problem. It is a simple 
harmonic molecule at chemical equilibrium with an ideal rarefied gas of their constituents 
atoms. The model may be solved exactly, to get the density of molecules as a function 
of the density of the atoms. Then we study the problem with a mean field approximation, 
which describes the molecule as an inhomogeneous density distribution, with an excess 
grand potential energy An,. The exact solution has a free translational mode and n - 1 
vibrational modes contributing to the free energy, while in the approximate mean field 
calculation there is no free translational mode (which requires the correlated movement of 
all the atoms) and all the n modes have positive frequencies. The ghost of the lost free 
translation mode appears as an indeterminacy in the position of the density distribution 
which describes the molecule. Now we may use equation (17) with the exact value of 
p, and the approximate AQ, to get U,. As we anticipated it has no dependence with 
the particle mass or with the ‘thermal wavelength’. It gets its dimension from the ratio 
between the spring constant of the harmonic forces and the thermal energy k s T .  A natural 
extension to our problem is through the connection of the spring constant with the ‘molecular 
compressibility’, i.e. to the change in the molecular size induced by external pressure. Thus, 
we propose here to take 

where po = p ~ s ( p a )  is the pressure of the bulk phase. This approximation for U, goes 
together with the approximate free energy used to evaluate AQ,. Any description of 
the molecular aggregates as self-structured density distributions is an approximation. If 
we could use the exact free energy density functional of the problem we would get the 
presence of micelles from the correlation structure, but the equilibrium density distribution 
in the absence of external potentials will be homogeneous. There is no exact value of U, in 
(20) because there is no exact value of An,, and we should take together the approximation 
in the two terms. Our proposal is reasonable, it may be used for any density functional 
approximation, without any other ingredient like the molecular mass or the ‘coarse graining’ 
length, and it gives, in a natural way, values of U, which are related to the molecular size. 

We may now calculate the global phase diagram, in figure 9, with the total density 
of amphiphilic molecules at equilibrium with free membranes calculated with (20), (21) 
and (24). The phase diagram shows a low-temperature region in which free membranes 
coexist with the amphiphilic solution nearly in absence of micelles (p t  Y p;*(T)). As this 
coexistence line approaches the region of micellation there is a sharp bend in the curve. 
We have to add a much larger amount of amphiphile to keep the free membranes stable, 
most of it goes into micelles, with very little increase of pa. This fact sets a maximum 
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Figure 9. Global phase diagram for free membranes wilh polar and quadrupolar interactions (15) 
with the Yukawa potential with A = 2 and q = 0.5. The dotted line represent the equilibrium 
line piq(T) ,  as in figure4(h), in terms of the density of isolated amphiphilic molecules, PO. while 
the full line represents the total density of amphiphilic molecules. including isolated molecules 
and micelles. nt equilibrium with free membranes at each temperature, in unirs of the interaction 
roength. We represent only the low-density pan of the d i a g m ,  wilh pi e 0.1 in units of the 
HS diameter. where thc micelles may be trwed as isolated aggregates. 

temperature for the existence of free membranes which is close to the crossing of pi”(T)  
and the micellation line, where the system becomes packed with micelles and we have to 
go beyond the ideal gas approximation for them. The difference between the two lines in 
the phase diagram in figure 9 shows the importance of the global analysis to predict the 
stability of membranes in the relevant thermodynamic space (pl+ T ) ,  rather than in (po, T) .  

We conclude that the density functional model developed here contains the essential 
feature of amphiphilic systems: a large variety of aggregation structures from microscopic 
clusters to macroscopic phases. We have explored only molecular distributions with 
perfect planar and spherical geometry. The same density functional may be used to study 
other cases, with computational capability the only limitation. It is clearly feasible to 
study aggregates with cylindrical symmetry, which would allow the calculation of the two 
independent curvature energy constants and also to study the stability of rod-like micelles 
and hexagonal phases, induced by a intrinsic preferential curvature produced by other terms 
in the molecular potential. It is also possible, with the present computational power, to 
study systems in which the density distribution depends on two variables, like a semi-infinite 
planar membrane to calculate the edge energy, when it  is free or anchored to a substrate. 
All these properties would refer to the same density functional approximation. They would 
be consistently linked at microscopic level, and this link may pose more restrictions on 
the detailed interactions in our model. In our attempt to set up a minimal model, we 
have eliminated many aspects of the molecular structure and interactions, e.g. the flexible 
hydrocarbon tails and the detailed interaction with water, which are crucial to determine 
the structure of the aggregates in real amphiphiles. The molecular structure of micelles in 
our model is very different from that of real amphiphilic micelles. However, as in any 
complex system, we may hope that the most relevant features are common to a broad class 
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of systems, and the main role of the theoretical models is precisely to find out simple 
realizations of the class. In this case, the existence of a large variety of aggregates with 
very different geometries is the main feature shared by our model and amphiphilic systems. 
The approximations in the density functional, and in the connection of the two levels of 
descriptions for micelles, may be checked directly in computer simulations, either with the 
full molecular description, or with the exact analytic average over the molecular orientations. 
The validation of the approximation for this minimal model would be of interest for the 
development of more complex descriptions of the amphiphilic molecules. 
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Appendix 

Here we present a simple model for which we may calculate the prefactor U, in (20), by 
comparing the result of a mean field approximation with the exact solution. We consider 
a linear harmonic molecule formed by n classical particles of equal mass, m, which move 
along the X axis linked with n - 1 equal springs of constant K .  We denote by xt and pi 
the coordinate and momentum of each particle, with i = I . .  , , , n, and the hamiltonian is 

where U0 and lo are the molecular binding energy and equilibrium atomic distances. These 
molecules are at chemical equilibrium with an ideal gas of monomers, with kinetic energy 
p2 / (2m) .  We use classical statistical mechanics to describe a mixture of NO indistinguishable 
monomers and N,  indistinguishable n-mers molecules, without any interaction. The total 
free energy in a one-dimensional box of length L is: 

where zo and zm are the partition function of a monomer and a molecule respectively. For 
the monomer in a box of length L we may write, zo = L / U O ,  where vo is the 'configurational 
unit length' (or thermal wavelength) for monomers, 

and f i  is the quantum of phase space (within classical statistical mechanics it may be taken 
as an arbitrary constant without any change in observable properties). For the molecules 
we have to take into account the harmonic vibrations of the n - I normal modes, with 
frequencies wi > 0, and the free translation of the centre of mass. The latter contributes to 
zm with a factor L/vo ,  each vibration mode contributes with a factor kBT/(hoi) and 
there is a factor eQlIkaT from the molecular binding energy. 
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The chemical potential of monomers and molecules, when they have density po = No/L 
and pm = N m / L  respectively, are directly obtained from (A2): 

The equilibrium between monomers and molecules implies that p ,  = npo, because we 
can make a molecule from n monomers and vice versa. This gives the exact equilibrium 
density of molecules as a function of po and T ,  

with the usual form of the chemical equilibrium in ideal gases or solutions. We may define 
the dimensionless frequencies, 6; = wi(m/K)1/2,  which are independent of both m and K ,  

and are the n - 1 positive roots of the characteristic equation 

1 - 6 2  -1 0 
-1 2 - 6 2  -1 
0 -1 2 - 6 2  

1 ... . . .  
... 0 

... 

while the remaining root is w = 
way we arrive at, 

... 
0 ... 

-1 0 

-1 2 - 6 2  
0 -1 
... 0 

... . . .  

associated to 

. . .  

. .. 
-1 

2 - 3 2  
-1  

: free tram 

... 
0 

- 1  
1 - 6 2  

Ition of 

= o  

moleci I this 

which is independent of both h and m, as it has to be in classical statistical mechanics. The 
only relevant length scale which appears to settle the dimension balance comes from the 
ratio between the thermal energy kaT and the spring constant K .  

Let us now analyse the problem along the lines used in this work to describe molecular 
aggregates. We use a mean field approximation, which corresponds to studying the 
vibrations of each particle in the molecule with all the other particles at their equilibrium 
positions 5 c 4 .  With this approximation we obtain a vibration mode for each particle in 
the molecule, all frequencies are proportional to ( K / m ) ' j 2  with proportionality factors &yf, 
which come from the diagonal terms of (A6). In this mean field treatment the density 
distribution of particles in a molecule is given by gaussian peaks centred around each 
equilibrium position xr4 and width proportional to ( k B T / K ) 1 / 2 .  The relative distance 
between the peaks is given by Eo in (Al), but the overall position of the molecule is not 
determined. The total free energy of a molecule, in this mean field approximation is: 

Both AF, and the chemical potential /lo depend on uo but this dependence cancels out in 
the grand potential excess, 
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We now use this approximate grand potential energy to get the density of molecules at 
equilibrium with the ideal gas of monomers, as a function of T and PO. This is done 
through equation (20) and we may compare with the exact result (A7) to get the value 
of the undetermined parameter U,, which represents the 'configurational unit cell' for the 
molecules: 

The first conclusion is that U,,, gets its dimension of length from the factor ( k s T / K ) ' / ' ,  
which as we say above is the only natural length in the problem. This length is multiplied 
by a numerical factor which depends on the number of monomers n. For a dimer, n = 2, 
this factor is exactly 1. and it  decays exponentially with n as 2(2-n)/2. This particular 
dependence is associated with the simple molecular structure defined in (AI), we may 
study other harmonic structures and find different numerical coefficients. Even for the 
model (Al) we may get other factors if we improve the approximation used to get AQm. 
Thus, we could analyse the vibrations of each particle keeping the correlations with its first 
neighbours, but with the other particles fixed at their equilibrium positions. This would still 
give a representation of the molecule as a inhomogeneous density distribution, with wider 
gaussian amplitudes around each x ; ~ ,  and arbitrary origin. The normal frequencies from 
the approximate and the exact characteristic equations would approach, and the numerical 
factor in (A10) would become closer to 1. Only when we include the correlations between 
all the n particles in the molecule do we recover the soft mode of translation and lose the 
description of the molecule as a inhomogeneous density distribution. 

For any approximate description of the molecule, we may express the exponential 
dependence with n in the numerical factor in (AlO) as 

where the exact value of pm is taken from the approximate AQ, by using the adequate 
value of a. The term a ( n  - 2) may be understood as the correction of the error made by the 
approximate AQm, and it has the correct linear dependence with the molecular size which 
may be expected in AQm, which for large n should be an extensive quantity. The second 
conclusion is that, in the absence of the exact result, we may take 

as the approximate density of aggregates. consistent with its description through the 
approximate Anm. The uncertainty in a numerical prefactor is thrown into, and mixed 
with, the uncertainty in the degree of accuracy of the free energy approximation. This 
approximation leads to a um which is independent of the number of monomers in the 
molecule. The spring constant K has an obvious interpretation in terms of the inverse 
'molecular compressibility' xm,  i.e. the change in the total molecular length, 81, = n Slo, 
induced by a external compression force Sf, 

which may be extended directly to molecular aggregates in three dimensions, with total 
excess of molecules ANm, and the volume integral of the isothemal compressibility, 
xr = a(log(p))/ap, minus its bulk value, as the generalization of lmxm.  This leads to 
the equation (24) used here to determine U,. 
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